
Final Exam — Ordinary Differential Equations (WIGDV–07)

Wednesday 28 October 2015, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (12 points)

Solve the following initial value problem:

y′ =
y

x

(

1 + log(y)− log(x)
)

, y(1) = e.

Problem 2 (10 points)

Solve the following Bernoulli equation:

dy

dx
+ 2xy + xy4 = 0.

Problem 3 (2 + 12 + 6 points)

Consider the following 3× 3 matrix:

A =





1 0 1
1 0 2
1 −1 2





(a) Show that det(A− λI) = (1− λ)3

(b) Compute the Jordan canonical form of A.

(c) Compute a fundamental matrix for the system y′ = Ay.
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Problem 4 (5 + 5 + 5 + 5 points)

Let b > 0 be arbitrary, and let C([0, b]) denote the space of continuous functions on
the interval [0, b]. For all α > 0 the norm

‖y‖ = sup
{

|y(x)|e−αx : x ∈ [0, b]
}

turns C([0, b]) into a Banach space. Consider the integral operator

T : C([0, b]) → C([0, b]), (Ty)(x) =

∫ x

0

√

1 + y(t)2 dt.

Prove the following statements:

(a)
∣

∣

√

1 + y2 −
√
1 + z2

∣

∣ ≤
∣

∣y − z
∣

∣ ∀ y, z ∈ R.

(b)
∣

∣(Ty)(x)− (Tz)(x)
∣

∣ ≤ eαx − 1

α
‖y − z‖ ∀ y, z ∈ C([0, b]), x ∈ [0, b].

(c) ‖Ty − Tz‖ ≤ 1

α
‖y − z‖ ∀ y, z ∈ C([0, b])

(d) The initial value problem

y′ =
√

1 + y2, y(0) = 0.

has a unique solution on the interval [0, b].

Problem 5 (3 + 10 points)

Consider the second-order equation:

u′′ − 4xu′ + (4x2 − 2)u = 0

(a) Show that u1(x) = ex
2

is a solution.

(b) Compute a second solution of the form u2(x) = c(x)ex
2

such that u1 and u2 are
linearly independent.

Problem 6 (10 + 5 points)

Consider the semi-homogeneous boundary value problem

d2u

dx2
− u = f(x), u(0) = 0, u(1) = 0.

where f(x) is a continuous function.

(a) Compute Green’s function.

(b) Solve the boundary value problem with f(x) = e−x using Green’s function.

End of test (90 points)
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Solution of Problem 1 (12 points)

We can rewrite the differential equation as follows:

dy

dx
=

y

x
+

y

x
log

(y

x

)

Taking the substitution u = y/x gives the new differential equation

du

dx
=

u log(u)

x

(3 points)

Separating the variables gives

∫

1

u log(u)
du =

∫

1

x
dx

(1 point)

Integrating both sides gives

log | log(u)| = log |x|+ C

(3 points)

Note: the differential equation is only defined for x > 0 so we can omit the absolute
value bars in the right hand side. First solving for u and then for y gives

u = eKx ⇒ y = xeKx

where K = ±eC is a new arbitrary constant.
(3 points)

Finally, the initial condition y(1) = e gives K = 1 so that y = xex.
(2 points)
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Solution of Problem 2 (10 points)

This is a Bernoulli equation with α = 4. Therefore, we introduce the new variable
z = y1−α = y−3.
(1 point)

The new variable satisfies a linear differential equation:

dz

dx
− 6xz = 3x

(3 points)

Multiplying with the integrating factor e−3x2

gives

e−3x2 dz

dx
− 6xe−3x2

z = 3xe−3x2 ⇒ d

dx

[

e−3x2

z
]

= 3xe−3x2

Integrating both sides gives

e−3x2

z = −1

2
e−3x2

+ C ⇒ z = −1

2
+ Ce3x

2

(5 points)

Finally, we obtain the solution for the original problem:

z =
1

y3
⇒ y =

1
3
√
z
=

1

3

√

−1

2
+ Ce3x2

(1 point)
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Solution of Problem 3 (2 + 12 + 6 points)

(a) Expanding the determinant along the first row gives

det(A− λI) = det





1− λ 0 1
1 −λ 2
1 −1 2− λ





= (1− λ) det

[

−λ 2
−1 2− λ

]

+ det

[

1 −λ
1 −1

]

= (1− λ)(λ2 − 2λ+ 2) + (λ− 1)

= (1− λ)(λ2 − 2λ+ 1)

= (1− λ)(λ− 1)2

= (1− λ)3

(2 points)

(b) The generalized eigenspaces of A are given by:

A− I =





0 0 1
1 −1 2
1 −1 1



 ∼





1 −1 0
0 0 1
0 0 0



 ⇒ E1

λ = Span











1
1
0











(2 points)

(A− I)2 =





1 −1 1
1 −1 1
0 0 0



 ∼





1 −1 1
0 0 0
0 0 0



 ⇒ E2

λ = Span











−1
0
1



 ,





1
1
0











(2 points)

(A− I)3 =





0 0 0
0 0 0
0 0 0



 ⇒ E3

λ = Span











1
0
0



 ,





0
1
0



 ,





0
0
1











(2 points)
Therefore, the dot diagram is given by

r1 = dimE1
λ = 1

r2 = dimE2
λ − dimE1

λ = 1

r3 = dimE3
λ − dimE2

λ = 1











⇒
•
•
•

which means we have one cycle of length three. In particular, we obtain

J =





1 1 0
0 1 1
0 0 1





(2 points)
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To construct the matrix Q we start by selecting a vector v ∈ E3
λ which is not

contained in the previous eigenspaces. For example, we can take

v =





0
0
1



 ⇒ (A− I)v =





1
2
1



 ⇒ (A− I)2v =





1
1
0





(2 points)

Listing these vectors in the reverse order gives the following matrix

Q =





1 1 0
1 2 0
0 1 1





(2 points)

(c) A possible fundamental matrix is given by

Y (t) = QeJt =





1 1 0
1 2 0
0 1 1









et tet 1

2
t2et

0 et tet

0 0 et





(4 points)

Writing out the product gives

Y (t) = et





1 1 0
1 2 0
0 1 1









1 t 1

2
t2

0 1 t
0 0 1



 = et





1 1 + t t+ 1

2
t2

1 2 + t 2t+ 1

2
t2

0 1 1 + t





(2 points)

Note that it was not necessary to compute Q−1 in this problem. The question
was to compute a fundamental matrix, and not to compute eAt!
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Solution of Problem 4 (5 + 5 + 5 + 5 points)

(a) Apply the Mean Value Theorem to the function f(y) =
√

1 + y2: for all y, z ∈ R

there exists a point c between y and z such that

f(y)− f(z) = f ′(c)(y − z) ⇒
√

1 + y2 −
√
1 + z2 =

c√
1 + c2

(y − z)

(3 points)

Taking absolute values gives

∣

∣

√

1 + y2 −
√
1 + z2

∣

∣ =

∣

∣

∣

∣

c√
1 + c2

∣

∣

∣

∣

·
∣

∣y − z
∣

∣ ≤
∣

∣y − z
∣

∣

(2 points)

The inequality follows from the fact that

√
1 + c2 ≥

√
c2 = |c| ⇒

∣

∣

∣

∣

c√
1 + c2

∣

∣

∣

∣

=
|c|√
1 + c2

≤ 1

(b) Let y, z ∈ C([0, b]) and x ∈ [0, b] be arbitrary. Then the triangle inequality for
integrals and part (a) together imply that

∣

∣(Ty)(x)− (Tz)(x)
∣

∣ =

∣

∣

∣

∣

∫ x

0

√

1 + y(t)2 −
√

1 + z(t)2 dt

∣

∣

∣

∣

≤
∫ x

0

∣

∣

√

1 + y(t)2 −
√

1 + z(t)2
∣

∣ dt

≤
∫ x

0

∣

∣y(t)− z(t)
∣

∣ dt

(3 points)

Noting that |y(t)− z(t)|e−αt ≤ ‖y − z‖ for all t ∈ [0, b] gives

∣

∣(Ty)(x)− (Tz)(x)
∣

∣ ≤
∫ x

0

∣

∣y(t)− z(t)
∣

∣e−αteαt dt

≤ ‖y − z‖
∫ x

0

eαt dt

=
eαx − 1

α
‖y − z‖

(2 points)

(c) From part (b) it follows that for all x ∈ [0, b] we have that

∣

∣(Ty)(x)− (Tz)(x)
∣

∣e−αx ≤ 1− e−αx

α
‖y − z‖ ≤ 1

α
‖y − z‖

Now taking the supremum over all x ∈ [0, b] gives the desired result.
(5 points)
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(d) Recall Banach’s fixed point theorem: assume that

(i) B is a Banach space

(ii) D ⊂ B is closed

(iii) T : D ⊂ B → B satisfies T (D) ⊂ D and

∃ 0 < q < 1 such that ‖T (y)− T (z)‖ ≤ q‖y − z‖ ∀ y, z ∈ D

Then there exists a unique point ȳ ∈ B such that T (ȳ) = ȳ. Moreover, iterations
of T converge to this fixed point:

y0 ∈ D, yn+1 = T (yn) ⇒ lim
n→∞

yn = ȳ

We apply this theorem with B = D = C([0, b]). Then D is automatically closed
and T (D) ⊂ D is trivially satisfied. For α > 1 we have q = 1/α ∈ (0, 1) so that
T becomes a contraction. Therefore, Banach’s fixed point theorem implies that
there exists a unique y ∈ C([0, b]) such that T (y) = y.

Since we have the following equivalences

T (y) = y ⇔ y(x) =

∫ x

0

√

1 + y(t)2 dt ⇔
{

y′ =
√

1 + y2

y(0) = 0

we obtain the existence and uniqueness result for the initial value problem.
(5 points)
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Solution of Problem 5 (3 + 10 points)

(a) We have

u = ex
2

, u′ = 2xex
2

, u′′ = (4x2 + 2)ex
2

Substitution into the differential equation gives

(4x2 + 2)ex
2 − 8x2ex

2

+ (4x2 − 2)ex
2

= (4x2 − 8x2 + 4x2 + 2− 2)ex
2

= 0

(3 points)

(b) We have

u2 = c(x)ex
2

, u′

2 = [c′(x)+2xc(x)]ex
2

, u′′

2 = [c′′(x)+4xc′(x)+(4x2+2)c(x)]ex
2

(4 points)

Substitution in the differential equation gives

ex
2

c′′(x) = 0 ⇒ c′′(x) = 0 ⇒ c(x) = ax+ b

Hence, a second solution is given by u2 = (ax+ b)ex
2

.
(4 points)

The Wronskian determinant of u1 and u2 is given by

W = u1u
′

2 − u′

1u2 = ae2x
2

To make u1 and u2 linearly independent we need to take a 6= 0. An obvious
choice is a = 1 and b = 0.
(2 points)

Since u2(x) = c(x)u1 an alternative argument is that u1 and u2 are linearly
independent if and only if c(x) is not a constant function, which is the case if
a 6= 0.
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Solution of Problem 6 (10 + 5 points)

(a) First we solve the homogeneous differential equation:

u′′ − u = 0 ⇒ u = c1e
x + c2e

−x

(2 points)

The solution u1 = ex − e−x satisfies the left boundary condition u(0) = 0.
(1 point)

The solution u2 = ex−e2e−x satisfies the right boundary condition u(1) = 0.
(1 point)

Their Wronskian determinant is given by

W = u1u
′

2 − u′

1u2 = 2(e2 − 1)

(2 points)

Since p(x) = 1 in this problem the Green’s function is given by

Γ(x, ξ) =
1

2(e2 − 1)







(ex − e−x)(eξ − e2−ξ) if 0 ≤ x ≤ ξ ≤ 1

(eξ − e−ξ)(ex − e2−x) if 0 ≤ ξ ≤ x ≤ 1

(4 points)

(b) The solution of the boundary value problem with f(x) = e−x is given by

u(x) =

∫

1

0

Γ(x, ξ)f(ξ) dξ

(1 point)

which can be written as

u(x) =
ex − e−x

2(e2 − 1)

∫

1

x

1− e2−2ξ dξ +
ex − e2−x

2(e2 − 1)

∫ x

0

1− e−2ξ dξ

Computing the integrals gives
∫

1

x

1− e2−2ξ dξ =
3

2
− e2−2x

2
− x

(2 points)

∫ x

0

1− e−2ξ dξ = −1

2
+

e−2x

2
+ x

(2 points)

Putting everything together and simplifying the result gives

u(x) =
ex − e−x

2(e2 − 1)
− xe−x

2
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